# Exam. Code : 211002 <br> Subject Code : 5540 

# M.Sc. (Mathematics) $2^{\text {nd }}$ Semester <br> REAL ANALYSIS-II <br> Paper-MATH-561 

Time Allowed-Three Hours] [Maximum Marks-100
Note :-Attempt any TWO questions from each unit. Each question carries equal marks.

UNIT-I

1. State and prove Arzela's theorem.
2. Suppose $K$ is compact and $\left\{f_{n}\right\}$ is a sequence of continuous functions on K and $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges pointwise to a continuous function f on K . Also, $\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \geq \mathrm{f}_{\mathrm{n}+1}(\mathrm{x})$, $\forall \mathrm{x} \in \mathrm{K}, \mathrm{n}=1,2,3, \ldots$. Then $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on K .
3. The sequence of functions $\left\{f_{n}\right\}$ defined on $E$, converges uniformly on $E$ if and only if for every $\varepsilon>0$ there exists an integer N such that $\mathrm{m} \geq \mathrm{N}, \mathrm{n} \geq \mathrm{N}, \mathrm{x} \in \mathrm{E}$ implies $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x})\right| \leq \varepsilon$.
4. Define equicontinuity. If $K$ is compact and $f_{n} \in \mathbb{C}(K)$ for $\mathrm{n}=1,2,3, \ldots$ and if $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is pointwise bounded and equicontinuous on $K$, then $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is uniformly bounded on K and contains a uniformly convergent subsequence.

## UNIT-II

5. Define a measurable set. Prove that outer measure of an interval is its length.
6. If $m$ is a countably additive, translation invariant measure defined on a $\sigma$-algebra containing the set P , then $\mathrm{m}[0,1)$ is either zero or infinity.
7. If A is countable then show that $\mathrm{m}^{*} \mathrm{~A}=0$.
8. Show that the interval $(a, \infty)$ is measurable.

## UNIT-III

9. Define a measurable function. Let c be a constant and $f$ and $g$ be two real valued measurable functions defined on the same domain, then $\mathrm{f} \pm \mathrm{g}, \mathrm{f}+\mathrm{c}$ and cf are also measurable.
10. Define a characteristic function and a simple function. Prove that $\chi_{\mathrm{A} \cap \mathrm{B}}=\chi_{\mathrm{A}} \cdot \chi_{\mathrm{B}}$ and $\chi_{\overline{\mathrm{A}}}=1-\chi_{\mathrm{A}}$.
11. Define almost everywhere. If $f$ is measurable function and $f=g$ a.e., then $g$ is measurable.
12. State and prove Egoroff's theorem.

UNIT-IV
13. Give an example of a function which is Lebesgue integrable but not Riemann integrable.
14. State and prove monotone convergence theorem.
15. State and prove bounded convergence theorem.
16. Let f be a non-negative measurable function. Show that $\int f=0$ implies $f=0$ a.e.

7391(2518)/CTT-39316
(Contd.)

## UNIT-V

17. State and prove Vitali's lemma.
18. If $f$ is integrable on $[a, b]$ and $\int_{a}^{x} f(t) d t=0$, for all $x \varepsilon[a, b]$, then $f(t)=0$ a.e. in $[a, b]$.
19. Define absolute continuity. Show that every absolutely continuous function is the indefinite integral of its derivative.
20. Let $f$ be an increasing real valued function on the interval $[\mathrm{a}, \mathrm{b}]$. Then f is differentiable almost everywhere. The derivative $f^{\prime}$ is measurable and $\int_{a}^{b} f^{\prime}(x) d x \leq f(b)-f(a)$.
